Check Out the Military’s Experimental Helicopter Plane

An artistic representation of the LightningStrike VTOL-X plane concept.

AURORA

AA Font size + Print

An artistic representation of the LightningStrike VTOL-X plane concept.

The Pentagon has picked a design for its next experimental aircraft.

What takes off like a helicopter, flies like a plane, and looks like something Orville Wright might dream up on mescaline? The military’s next X-Plane! On Thursday, aircraft maker Aurora Flight Sciences announced that its LightningStrike design had received the prime contract to continue the development of the VTOL X-Plane project. (VTOL stands for vertical takeoff and/or landing.)

The Defense Advanced Research Projects Agency, or DARPA, first announced the VTOL program back in 2013. The goal: radically improved helicopter technology that could carry about 4,000 pounds (40 percent of the vehicle’s weight) at speeds over 300 knots. (For context, the F-35 was designed for a top speed of 1,066 knots.) The original broad agency announcement, or BAA, called for some $130 million in research and development over three phases.

But why does the military need a new helicopter plane when it already has the Boeing V-22 Osprey? To cite the BAA: the  program is a technology demonstrator and “not intended to create a pre-production type aircraft for any specific operational effort.” Rather, the goal is broad technological improvements in helicopter and vertical lift tech.

Vertical-lift craft like the Osprey use big open rotors because you can get more lift straight up at less power. But even with large rotators, VTOLs are only about 60% as efficient as they could be. And the status quo has a downside, literally, in the form of bad lift-to-drag ratio, which is the amount of lift an aircraft generates divided by the amount of aerodynamic drag. The better the ratio, the less energy the aircraft will burn taking off and the better it will fly. Fixed-wing aircraft have a lift-to-drag ratio that’s two to three times better than typical vertical-lift aircraft, according to the BAA.

But shrinking the rotors means you have to add power. Just ask Paul Moller, inventor of the Moller M400 Skycar, basically a VTOL for regular folks with four rotor pods arrayed around a passenger capsule. The blades would move the car up vertically and then tilt to propel it through the air. Moeller was able to successfully demonstrate it several times, but the amount of energy needed to move the fans is, basically, the reason you can’t have a flying car, today.

“Once you reduce the diameter of the propulsion system” — that is, shrink the size of the propellers — “you go from a helicopter to a fan system. So you’re moving less air, and the less air you move, the more power it takes to generate a certain kind of thrust. If I took a helicopter and made it one-half the diameter, I would have to immediately add 60% more power. I halve the diameter again, I have to add 60% more power, again,” he told The Futurist magazine back in 2008.

Aurora’s design uses 24 ducted fans on the wings and the tail or canards. A Rolls-Royce AE 1107C turboshaft engine feeds power to three Honeywell generators, which run the propellers’ motors.

Phase II of the program comes next and “will focus on the detailed design, development, fabrication and testing of the subsystem technologies for integration on the aircraft,” the BAA said. “Fabrication of the two air vehicles will also commence during this phase with the first aircraft completed prior to Phase III.”

If the tests are successful, the military will have an actual aircraft and a much better idea how to create helicopter planes by the time the program conducts live tests in 2018.

No date yet on your flying car.

Close [ x ] More from DefenseOne
 
 

Thank you for subscribing to newsletters from DefenseOne.com.
We think these reports might interest you:

  • Software-Defined Networking

    So many demands are being placed on federal information technology networks, which must handle vast amounts of data, accommodate voice and video, and cope with a multitude of highly connected devices while keeping government information secure from cyber threats. This issue brief discusses the state of SDN in the federal government and the path forward.

    Download
  • Military Readiness: Ensuring Readiness with Analytic Insight

    To determine military readiness, decision makers in defense organizations must develop an understanding of complex inter-relationships among readiness variables. For example, how will an anticipated change in a readiness input really impact readiness at the unit level and, equally important, how will it impact readiness outside of the unit? Learn how to form a more sophisticated and accurate understanding of readiness and make decisions in a timely and cost-effective manner.

    Download
  • Cyber Risk Report: Cybercrime Trends from 2016

    In our first half 2016 cyber trends report, SurfWatch Labs threat intelligence analysts noted one key theme – the interconnected nature of cybercrime – and the second half of the year saw organizations continuing to struggle with that reality. The number of potential cyber threats, the pool of already compromised information, and the ease of finding increasingly sophisticated cybercriminal tools continued to snowball throughout the year.

    Download
  • A New Security Architecture for Federal Networks

    Federal government networks are under constant attack, and the number of those attacks is increasing. This issue brief discusses today's threats and a new model for the future.

    Download
  • Information Operations: Retaking the High Ground

    Today's threats are fluent in rapidly evolving areas of the Internet, especially social media. Learn how military organizations can secure an advantage in this developing arena.

    Download

When you download a report, your information may be shared with the underwriters of that document.