A quantum computing processor from the company D Wave, the Washington C16.

A quantum computing processor from the company D Wave, the Washington C16. Courtesy photo D Wave

The Subatomic Race to Harness Quantum Science

US, China are betting millions on the promise of this newish field, but the real-world potential remains a mystery.

An assortment of super powers awaits the superpower that harnesses quantum science: unhackable communications, radars that see underground, supercomputers that make today’s biggest machines look like first-generation Ataris. But which of those goals are achievable in the near future, and at what cost?

Earlier this summer, the Pentagon announced a $45 million research effort into quantum networking. Meanwhile, China hopes to complete construction of the world’s largest quantum communication network and become the first nation to put a quantum communications satellite into orbit. But other military-funded research has suggested that quantum comms and cryptography may prove too complicated to warrant the effort, while quantum computing will remain out of reach for a decade or more. (Some argue that's being very optimistic.)

All of this power, and all of this hype, emerges from a source almost unfathomably small: atomic and subatomic particles that behave differently than larger objects, especially at very cold temperatures. It’s enormously difficult even to study quantum objects; simply observing them generally changes their behavior.

The Holy Grail of applied quantum science is quantum computation, which is as different from regular computers as humans are from jellyfish. Whereas conventional computing uses electrical impulses running through transistors to manipulate bits, or binary values of one or zero, quantum machines track the strange behavior of ultracold atoms that can exist in two states at once — a one, a zero, or both. If you’ve got two qubits in the same so-called superposition, you have what’s called an entanglement gate. They’re atomically linked even if they’re miles apart. And this opens up the possibility of massive parallel calculating. What would you use that for? Think about cracking a code: you try one combination after another after another. But if you can try all the possible combos at once, you arrive at the solution instantly.

(Related: Four DARPA Projects That Could Be Bigger Than The Internet)

“Much like autonomy, quantum sciences is an area that could yield fundamental changes in military capabilities,” Defense Undersecretary Frank Kendall said at a Defense Department Lab day in June. “Examples include non-GPS [position, navigation, and timing], remote detection of submarines, remote mapping of tunnels and underground facilities … secure wireless communications and many others.”

Last November, the government of China announced two ambitious goals: the construction of a 1,240-mile quantum computer network stretching from Beijing to Shanghai, set to go live in 2016; and the launch of a quantum communications satellite. As of February, both projects were on track, according to Wang Jianyu, deputy director of the Chinese Academy of Science’s (CAS) Shanghai branch, who spoke at a conference.

In June, U.S. Deputy Defense Secretary Robert Work announced a $45 million quantum science research effort that would bring together the Air Force, Army, and Navy research labs to create a scalable quantum network with memory — on in which a quantum state is maintained without a loss of coherence. “This team is trying to figure out how to encrypt and then transmit information across long-range military networks for the war-fighter in a provably secure and robust fashion,” said Work. Such a network, which would allow quantum data to flow between physically separate systems, could support further research on quantum computing and quantum cryptography.

The United States does about one-quarter of the research and development in quantum science right now, at least as measured by articles in scientific journals, says Werner J.A. Dahm, who chairs the Air Force’s Scientific Advisory Board. Dahm’s board recently wrapped up a study of the field and its potential. Among its findings: some quantum-enabled tools may not be enough of an improvement over current methods to be worth the difficulty of developing them.

One potentially over-hyped area of investment is quantum encryption. It works like regular key distribution, with sender and receiver able to see the message only after they have exchanged a secret cryptographic key. But unlike some cryptographic solutions, no third party can penetrate it without being detected. Because subatomic particles change when they are viewed, any attempt to intercept the message would corrupt it in a conspicuous way, allowing sender and receiver to know immediately, and with certainty, that the message had been compromised.

“Rather remarkably, the study found that the Air Force has other alternatives for enhancing security of communications that don’t have as much of a complexity burden associated with them,” Dahm told reporters recently. “Most of what the study saw in the quantum area with regard to communications, the Air Force has equally good or better alternatives with other approaches.”

But other areas are more promising. In the near term, Dahm said, the most important thing quantum science can do for the Air Force is help it leave behind the expensive and aging Global Positioning System.

“These quantum navigation systems can allow very, very high accuracy and they can’t be jammed,” he said. “The drift rates are much lower than traditional [Inertial Measurement Units] have. That gives the Air Force very important utility for operating in a GPS-denied environment.”

(Related: What the Most Secure Email in the Universe Would Look Like)

Such positioning systems “are making remarkable progress and could be brought to a level of maturity that they would be valuable to the Air Force at a time scale that’s of interest to the Air Force. It’s not 30 or 50 years out,” he said.

Indeed, prototype quantum navigation and timing systems already exist, but they’re too large for many airplanes, missiles, and drones. That’s because they take advantage of the behaviors of atoms when they’re at their lowest level of energy, a state achievable only at incredibly cold temperatures — in some cases, a billion times colder than outer space. Cooling atoms to those depths requires lasers and energy. “It’s now a matter of shrinking down, and the study actually recommends the Air Force take the lead on that and invest, at a modest level, in miniaturizing these kinds of systems,” Dahm said.

Similarly, large quantum-enabled sensors already exist for looking underground. Oil and gas companies use quantum sensing to map subterranean cavities and hydrocarbon deposits. Very small changes in mass composition can have gravitational effects, far too subtle for today’s instruments to sense, but detectable at the quantum level. If such sensors could be made smaller and better, militaries might use them to pinpoint underground bunkers — or spot enemy submarines.  But gravitational sensing for the military will be limited by how close sensors can get to their potential targets, Dahm said.

The government has been funding quantum computer research for more than a decade, primarily for code-breaking. Last year, the Washington Post reported that the NSA was spending $80 million on a program called Penetrating Hard Targets to build a quantum system to crack the world’s toughest encryption standards.

But code-breaking isn’t the only area massive parallel-processing could be useful. “There are lots of Air Force problems to which quantum computing could be applied,” said Dahm. “Think about an aircraft and trying to compute…a signature in the [radio frequency] domain, let’s say. That is a massive computational problem. We throw large amounts of traditional computing power at those types of problems. If we could do that with a quantum computer you would be able to get it to a level of precision where you almost wouldn’t need a test range.”

But the barriers to real, provable, and practical quantum computing remain seemingly insurmountable. Even as quantum computing companies such as D-Wave claim to have achieved 512-qubit entanglement, the question of how to even to write code for a quantum computer remains a topic mostly of mystery.

“While the hardware side of quantum computing has made substantial progress, even if you had a quantum computer existing today, you can’t run regular software on a quantum computer. It doesn’t work that way. A quantum computer is not just a regular computer. It’s fundamentally different. Forget the software; the algorithms themselves on which the software is based have to be completely different,” said Dahm.

It’s an area replete with promise, but little hope of near-term payoff. The Air Force science board study recommends “a modest, continued effort with a focus on the software rather than the hardware.”

Even with world powers in the running, then, the race to harness quantum science will likely be a slow and steady one.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.