Paramarta Bari / Shutterstock

Don’t Rush Quantum-Proof Encryption, Warns NSA Research Director

Quantum computers could crack the codes that secure the world’s digital information but racing to a solution could create more threats.

In 1994, an American mathematician named Peter Shor discovered a way to crack the codes that banks, e-commerce platforms and intelligence agencies use to secure their digital information. His technique, dubbed Shor’s algorithm, drastically shortened the time it took to find the prime numbers that underlie public-key cryptography, making codes that typically take thousands of years to break solvable in a matter of months. 

But there was a catch: Shor’s algorithm could only run on a quantum computer, and those didn’t exist yet.

A quarter-century and many research dollars later, the world still hasn’t created a quantum computer capable of breaking public-key encryption in any reasonable amount of time. However, those machines are much closer to the horizon today than they were in the mid-1990s, and the cybersecurity community is already hedging its bets against a future when digital secrets are knowable to anyone with the right hacking chops and a couple dozen qubits.

When it comes to fighting quantum-enabled threats, timing is of the essence, according to Dr. Deborah Frincke, director of the National Security Agency’s research branch.

Related: The Pentagon is Trying to Secure Its Networks Against Quantum Codebreakers

Related: The Pentagon Is Turning to Nature to Solve Its Most Complex Problems

Related: Lasers, AI, Hypersonics Top DARPA’s Small-Biz Wishlist

Since about the time Shor unveiled his algorithm, Frincke has heard scientists predict quantum computers would arrive within roughly two decades. While those early predictions were overly optimistic, today many more people are backing that 20-year timeframe, Frincke said in a conversation with Nextgov. As rapid advances in quantum technology push current encryption protocols closer to their expiration date, she said it’s time for the government to start adapting its digital security methods for the future.

In 2015, the NSA announced it would begin exploring encryption schemes that could withstand an assault by a quantum computer, and in 2016 the National Institute of Standards and Technology kicked off a competition to develop such "quantum-resistant” algorithms. NIST received nearly 70 submissions to the competition, and after more than a year of testing and analysis, researchers in January announced 26 algorithms would advance to the second round. 

Though NSA isn’t directly involved in the NIST competition, Frincke and her team are closely following its progression. The security community works to defend today’s information ecosystem against tomorrow’s codebreakers but Frincke noted it’s important cryptographers don’t rush their work. Quantum computers may pose a substantial threat to digital security, she said, but deploying new encryption schemes too quickly could create additional own risks.

"There are two ways you could make a mistake with quantum-resistant encryption: One is you could jump to the algorithm too soon and the other is you jump to the algorithm too late,” she said.

If a group rolls out a new encryption scheme before it’s been thoroughly vetted, they might overlook vulnerabilities that quantum computers—or even classical machines—could exploit, according to Frincke. Without proper guidance, it’s also fairly easy to make a mistake when implementing the algorithms themselves, she said, which could lead to even more weaknesses.

“It's very important that people wait for NIST to do its due diligence,” Frincke said.

Even after NIST selects its winners, the threats posed by quantum computers won’t simply disappear, according to Frincke. Cryptography schemes are only effective until people find a way to break them, and it’s possible new vulnerabilities will emerge years down the line, especially after viable quantum computers become a reality, she said.

"Shor's algorithm is the attack that was developed in the absence of a quantum computer,” Frincke said. “It's hard to predict what people will actually do with one."

But in the meantime, NIST working hard to cover its bases.

Today, the agency is running the 26 encryption schemes that remain in the competition through a roughly 18-month vetting process, with cryptographers across government, industry and academia testing the algorithms against various attacks and measuring their performance in a wide array of applications. In June 2020, NIST plans to narrow the pool to about a dozen algorithms and conduct further testing, according to Dustin Moody, the NIST mathematician who’s spearheading the competition. The agency expects to select about four to six “winning” algorithms and publish guidelines for using them some time in 2022, Moody told Nextgov.

Still, he admitted testing algorithms for quantum-resistance remains an imperfect science, mostly because researchers can’t use an actual quantum system to launch attacks. But estimating potential computing power and modeling various known attacks, Moody said teams developed strategies to assess encryption strength without a true quantum machine.

The most important metric for candidate algorithms is their ability to withstand attacks, but Moody said researchers are considering multiple factors when assessing a given scheme’s effectiveness. According to Moody, one of the most important considerations is latency, or the time it takes to encrypt and decrypt a chunk of data. 

As a general rule of thumb, longer encryption keys boost security but also increase the amount of time and power it takes to process data. Today, many government agencies and private companies rely on 2048-bit keys, but most of the quantum-resistant algorithms in the competition use keys that exceed 1,000 bytes, about quadruple the length of a standard 2048-bit key, Moody said. One particular algorithm relies on a key roughly one-megabyte long, more than 3,900-times longer than today’s standard key.

Each scheme comes with a tradeoff between security and speed, Moody said, and as such certain algorithms are better fit for certain applications. A company looking to encrypt a device on the internet of things may want to prioritize speed, and thus opt for low-latency scheme with a short key, while a group like the NSA that wants to optimize security would trade speed for a heftier, more-robust key. All algorithms in the competition are relatively secure and high-performing, Moody said, though NIST will likely select multiple winners to accommodate different applications.

There’s not any one [algorithm] that seems to win across every category,” he said. “They all have some really strong benefits and some really strong drawbacks.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.