Joint Chiefs Chairman Gen. Martin Dempsey controlling a prosthetic arm during a visit to DARPA

Joint Chiefs Chairman Gen. Martin Dempsey controlling a prosthetic arm during a visit to DARPA Defense Department

Inside the Military’s New Office for Cyborgs

DARPA’s Arati Prabhakar tells Defense One that cutting-edge biology research is the future of national security -- and how we’ll get our Star Trek tricorders. By Patrick Tucker

The ability to link human brains to machines, create new life forms and build Star Trek-style disease detectors will be the focus of a new Defense Department office soon.

The new office, named the Biological Technology Office, or BTO, will serve as a clearinghouse for Defense Advanced Research Projects Agency, or DARPA, programs into brain research, synthetic biology and epidemiology. The office will cover everything from brewing up tomorrow's bioweapon detectors and connecting humans to computers to designing entirely new types of super-strong living materials that could form the basis of future devices. Here are the key areas in more detail.

Cyborgs, Neurochips and Brain-steered Drones

The human brain is often called the most complex object in the known universe, composed of 100 billion neurons and 100 trillion synapse connections. As a computer, it performs 10,000 trillion operations per second. That’s about one third as fast as the Chinese Tianhe-2 Super computer, which can perform 33,860 trillion calculations per second. But the human brain does it’s calculating with just 20 watts of power. Tianhe-2 needs 24 million watts.

In the last two decades, our understanding of the human brain has advanced tremendously through functional magnetic resonance imaging, or fMRI, magnetoenceplograhy, and high-resolution brain scans. Our ability to use brain signaling to control devices has grown at a similar pace, but getting brain material to mesh with sensors and electronics is no simple matter. A DARPA program, Revolutionizing Prosthetics, to better help veterans with amputated limbs control prosthetic legs and arms with brain signals was announced in 2009 but only very recently began to bear fruit. Last year, researchers from the Rehabilitation Institute of Chicago demonstrated a cybernetic arm prosthetic that functions like something straight out of RoboCop. The BTO will oversee a variety of programs aimed at understanding both the hardware and the software of the human brain.

"The prosthetics that are wirelessly neurally-controlled are just at the research stage. But some of the ones where the prosthetics are connecting in to the peripheral nervous system or are being controlled by other muscles in the body are currently in an FDA process," said Arati Prabhakar, DARPA director, in an interview with Defense One . So while we still haven't been able to connect a prosthetic directly to the brain, researchers have achieved much better integration with prosthetics and nerves.

Prabhakar says that the research has applications well beyond helping veterans to live better lives, including the creation of devices and chips that mimic the brain. “That kind of amazing capability is something that no one thought was possible. What we’re learning about the human brain could give us insight into how we build our artificial processing capabilities."

The agency's Cortical Processor program, with a $2.3 million FY 2015 budget request, seeks to recreate in software the brain's capability to take in lots of incoming stimuli from sensory organs and spit out recognized patterns. "There is a processing structure in nature, the mammalian neocortex, that… routinely solves the most difficult recognition problems in real-time…" according to the agency's recently submitted budget proposal.

One far off potential application for the agency's brain research is neural-controlled piloting of drones or better steering for manned aircraft via neurological feedback, which could build off of current research using electroencephalography, or EEG, to pilot robots. EEG is a nonsurgical method for recording the brain's electromagnetic signals via a cap that's worn over the skull. Those signals are powerful enough to steer some robots.

In 2010, Northeastern University Electrical engineering professor Deniz Erdogmus and several researchers successfully demonstrated the piloting of a Roomba robot vacuum cleaner using thoughts. In 2012, Chinese researchers at Zhejiang University used EEG to pilot a small consumer UAV. These are the sorts of incremental research breakthroughs that seem to suggest that brain-controlled quad-copters are literally hovering around the corner. But EEG signals are too crude to do brain-based piloting in real time combat operations. Useful gains in this area will require getting not just powerful but more precise signals, and that means getting hot electronics closer to the brain. Unfortunately, soft and delicate brain tissue does not easily mix with circuits. It's a technical and materials challenge of enormous complexity, but hardly outside of the realm of possibility. A group of researchers from Singapore recently unveiled a neural probe that can be integrated on the brain with little damage to cellular structures.

Prabhakar is cautiously optimistic about the future of human-computer interfacing. She says that current research represents “a door opening" into new applications. "I would say we are now standing on this side of the door looking through and seeing what’s going to come out of it."

In the near term, a fuller understanding of our three-pound thinking organ would allow for improved situational awareness on the battlefield and better decision-making in life or death environments. "Think about warfighters in these very complex situations where the way that they understand the complexity around them makes all the difference in the world…We’re speculating but it might lead to some great advances."

Turning the Building Blocks of Life into New Materials

You can define synthetic biology, loosely, as the creation of new, artificial biological structures for new purposes. The field is in its infancy and DARPA’s new office is meant to accelerate current research. One example of that is the 1,000 Molecules program, part of DARPA's Living Foundries initiative, which is focused on "creating a biologically based manufacturing platform to provide rapid, scalable access to new materials with novel properties." These new materials would allow for a "new generation of mechanical, electrical, and optical products."

"What our program is trying to do is create the tools to make [synthetic biology] an engineering discipline. Instead of taking millions of dollars and many years to do even minor projects, we really want to unleash it," said Prabhakar. "Think about what’s going to be possible for new chemistries beyond petrochemicals. Think about new types of chemicals with all kinds of structural and electronic and optical properties."

Bioengineered materials derived from living components like lipids and proteins would be several times more diverse and functional than designs based on more traditional approaches to chemistry. Learning to harness the building blocks of life could allow for living materials that are stronger, more flexible, more durable and cheaper than anything available today. Those new materials could make their way into battlefield armor or even electronic components.

Synthetic biology also holds the promise of one day creating entirely new life forms. A group of researchers from the U.S. and U.K. recently announced the creation of the first artificial chromosome, derived from piecing together 273,871 separate DNA nucleotides from yeast, thus achieving a key step in the potential development of designer chromosomes or even new life.

Tricorders, Epidemics and Outrunning Disease

On Star Trek, the USS Enterprise's doctor, Bones, carries around a handheld device called a “tricorder” that can instantly diagnose any disease. DARPA wants it. Rapidly spreading diseases, whether as a result of biological attack or a naturally-occurring epidemic, present a grave and rising national security threat. As previously discussed , a highly-lethal flu pandemic could result in as many as 150 million deaths.

DARPA is looking to create new diagnostic gadgets and software to give soldiers and decision-makers "a rapid and specific diagnosis of infection so we can actually understand the spread of disease, something we don’t have visibility into right now." The ability to diagnose infections on site, perhaps with a single, handheld device, and then report the results immediately and globally could allow researchers to quickly identify the unique genetic makeup of emerging illnesses. That could help them to "create vaccines that offer immediate protection rather than vaccines that have a few week waiting period before immunity establishes itself. If we can get those capabilities built we can move faster than the disease is spreading,” said Prabhakar.

The DARPA program is called Autonomous Diagnostics to Enable Prevention and Therapeutics, or ADEPT, and is one example of the effort to conquer biological threats. The agency isn't alone in moving to build more rapid and deployable diagnostic capabilities. Qualcomm and the X Prize Foundation are sponsoring a $10 million dollar competition to build a handheld diagnostic device. We don't have to wait for Bones to show before realizing the benefits of the research effort. Today, health workers in Saudi Arabia are already using findings from DARPA's epidemiology-funded research to stay ahead of the Middle East respiratory syndrome coronavirus or MERS-CoV.

Prabhakar said it’s a fine and difficult line to walk, laying the research groundwork for the far future while offering new tools as quickly and as rapidly as possible. "We always are aiming for off-scale impact,” she said. “Meantime, we want to make sure we are delivering concrete capabilities.”

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.